16 research outputs found

    Quantitative Techniques for PET/CT: A Clinical Assessment of the Impact of PSF and TOF

    Get PDF
    Tomographic reconstruction has been a challenge for many imaging applications, and it is particularly problematic for count-limited modalities such as Positron Emission Tomography (PET). Recent advances in PET, including the incorporation of time-of-flight (TOF) information and modeling the variation of the point response across the imaging field (PSF), have resulted in significant improvements in image quality. While the effects of these techniques have been characterized with simulations and mathematical modeling, there has been relatively little work investigating the potential impact of such methods in the clinical setting. The objective of this work is to quantify these techniques in the context of realistic lesion detection and localization tasks for a medical environment. Mathematical observers are used to first identify optimal reconstruction parameters and then later to evaluate the performance of the reconstructions. The effect on the reconstruction algorithms is then evaluated for various patient sizes and imaging conditions. The findings for the mathematical observers are compared to, and validated by, the performance of three experienced nuclear medicine physicians completing the same task

    PET/CT

    Get PDF

    Myocardial Defect Detection Using PET-CT: Phantom Studies

    Get PDF
    It is expected that both noise and activity distribution can have impact on the detectability of a myocardial defect in a cardiac PET study. In this work, we performed phantom studies to investigate the detectability of a defect in the myocardium for different noise levels and activity distributions. We evaluated the performance of three reconstruction schemes: Filtered Back-Projection (FBP), Ordinary Poisson Ordered Subset Expectation Maximization (OP–OSEM), and Point Spread Function corrected OSEM (PSF–OSEM). We used the Channelized Hotelling Observer (CHO) for the task of myocardial defect detection. We found that the detectability of a myocardial defect is almost entirely dependent on the noise level and the contrast between the defect and its surroundings

    CHO SNR versus total number of counts in the background (A) and iteration number using PSF-OSEM for the default case described in Sec. 2, Materials and Methods.

    No full text
    <p>CHO SNR versus total number of counts in the background (A) and iteration number using PSF-OSEM for the default case described in Sec. 2, Materials and Methods.</p

    Additional file 1: Figure S1. of Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring

    No full text
    Venous blood sampling points for four patients. These data were consistent with the plasma partitioning model applied to all subjects in this work. Figure S2. Compartmental model rate parameters were independently estimated using five different metabolite correction models (a). Mean values are shown for all tissue regions in all patients (b); diamonds represent regions of healthy prostate and triangles represent tumors—with different colors corresponding to different Gleason scores. Error bars show the standard deviation of the results obtained with the four metabolite corrections. Calculations of the macroinflux parameters were more robust to changes in the input profile than were the individual compartmental parameters. Figure S3. Compartmental model rate parameters were independently estimated using two different plasma partitioning models for the first four patients with manual blood sampling; diamonds represent regions of healthy prostate and triangles represent tumors—with different colors corresponding to different Gleason scores. Error bars show the standard deviation of the results obtained with the two partitioning methods. Similar to the results shown in Additional file 1: Figure S2, estimations of choline influx rates were less sensitive than were the individual parameters. Figure S4. Akaike information criterion analysis for all tissue regions. Four different compartmental models were used to fit the data and the best model was determined by the lowest total AIC score. This plot shows mean AIC values in each of the three tissue regions; error bars show the interpatient standard deviation in each tissue category. The 2T4k+vB model (slightly) yielded the lowest overall AIC, but the reversible k 4 parameters were generally small compared to the other parameter values. Good correlation was still observed between choline influx terms, calculated from this model and Patlak analyses. Figure S5. Example patient maximum intensity projection image shown with 3D delineated tissue regions: red is tumor, green is healthy prostate, and blue is muscle. (DOCX 260 kb
    corecore